
4 

SIXTH RAREFIED GAS DYNAMICS 

THE mLES OF KINETIC THEORY AND GAS-SURFAa INTER- 
ACTIONS IN muBEHENTS OF UPPER-ATWSPHERIC DENSITY 

Mildred M. Moe 
Physicr Dept., Loyola University 

Lon Angelen, Calif .  90045 

. 

m e t h  No8 
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Th. r o b  played by kine t ic  theory and 
gas-surface interactions i n  the inter-  
pretation of measurements ma& by mass 
spectrorrters,  pressure gauges, and 
satellite drag are discussed. The ef-  
fec t  of adsorption is rmalyzed i n  detai l .  
A resolution of the dincrepmcien be- 
tween drag and inotr-ntal raasurements 
is proposed, tak ing  i n t o  accamt t h e  
corrections for  adsorption, gauge cali- 
bration, and chemical reactions of 
atomic oxygen. 

1. Introduction 
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Nearly allmeuurementr of the denaity of the neutral  
8t~0SpheM abom 100 kin have been made i n  one of the fol- 
lapring w 9 s  : 

1. The air molecules were ionized and the ion 
currents measured i n  a m a a s  spectrometer (1) or  
pressure gauge (2). 

The drag force o r  torque on a body WUI inferred 
from tracking data (3) o r  spin-rate measurement 
(4), or  measured by an accelerometer (5). 

3. The extinction (or abuorption) of so la r  ultra- 
violet-radiat ion (6) o r  X radiation (7) by 
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r i c  gases w a s  lrcasured. N 68: 3 32- 
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SIXTH RAREFIED GAS DYNAMICS 

There are sys temat ic  d i f f e rences  aarong the  d e n s i t i e s  
measured at t h e  same place  and t i m e  by t h e  various meth- 
ods (1,8-11) so i t  is  a matter of some urgency t o  inves- 
t i g a t e  t h e  unce r t a in t i e s  assoc ia ted  with each method. 
Densities measured by methods 1 and 2 depend s t rong ly  on 
what is known o r  assumed about k i n e t i c  theory and gas- 
surface i n t e r a c t i o n s .  Method 1 w i l l  be discussed i n  t h e  
present paper,  and method 2 w i l l  be discussed i n  a com- 
panion paper with G. S. Reiter (12). Method 3 depends on 
t he  absorption c ross  sec t ions  of atmospheric gases.  The 
problems assoc ia ted  with t h e  UV cross  s e c t i o n s ,  including 
t h e i r  rap id  v a r i a t i o n  wi th  wavelength and, hence, t h e i r  
apparent v a r i a t i o n  with a l t i t u d e ,  have been s tud ied  by 
Hinteregger and h i s  group (6,8).  The apparent v a r i a t i o n  
of the x-ray cross s e c t i o n s  nea r  180 km has been observed 
by Moe, et a l . ( l 3 ) .  The measurement of cross s e c t i o n s  i s  
a spectroscopic  problem (14),  so i t  w i l l  no t  be discussed 
fur ther  . 

yl 

1.1 

2. Mass Spectrometers and Pressure Gauges 

cons is t s  of an i n l e t ,  a chamber i n  which molecules reach 
thermal e q u i l i b r i u n ,  an i on iz ing  source,  and a system 
which measures cu r ren t s .  M a s s  spectrometers  can measure 
density and composition, day o r  n i g h t ,  with a s p a t i a l  
reso lu t ion  of a few km (15) ,  so they w i l l  u l t ima te ly  be 
t h e  instruments used t o  m a k e  p r e c i s e  atmospheric measure- 
ments; however , m a s s  spectrometers  are complicated devices  
i n  which many processes  occur ,  and each process can i n t r o -  
duce e r r o r s  i n t o  absolu te  a~aasurements. 
sources of error i n  conventional mass spectrometers  and 
pressure gauges include : 

A conventional mass spectrameter  o r  pressure  gauge 

The poss ib l e  

1. Cal ibra t ion  (10 , 16) 
2.  Decay of s e n s i t i v i t y  wi th  t i m e  (17) 
3. I n l e t  t ransmission (18,19) 
4. Dissociat ion (15) 
5 .  
6. Adsorption (22) 

Items 1, 5, and 6 are l i k e l y  t o  be major sources  of  

Chemical reactions of atomic oxygen (15,20,21) 

error. In  add i t ion ,  i t e m  3 could be  important f o r  rocke ts  
nea r  peak a l t i t u d e .  
our  a t t en t ion  on i t e m  6 ,  adsorp t ion ,  bu t  a t  t h e  end of t he  

I n  t h i s  paper w e  s h a l l  concent ra te  

Y 

2 

u: 

4 

8 



3 

SIXTH RAREFIED CAS DYNAMKX 

I C  

i l  

paper w e  eliall p o i n t  out how a combination of e r r o r s  
I ,  5 and 6 would expla in  the disagreements between 
ina t runen ta l  measuromenta and t h e  d e n s i t i e s  i n fe r r ed  
from satell i te drag. 

spaceborne instruments  (23,24,25) but  no t  included i n  the  
a n a l y s i s  of the  da ta .  So f a r ,  only one prel iminary 
a n a l y s i s  of t he  e f f e c t  of  adsorpt ion has  been published 
(22). so w e  propose t o  present  a more d e t a i l e d  ana lys i s  
of t h e  problem here .  This a n a l y s i s  r e f e r s  t o  e f f e c t s  
observed i n  conventional instruments.  There a l s o  e x i s t s  
a "nude" mass spectrometer,  which l acks  t h e  chamber. 
nude m a s s  spectrometer has an add i t iona l  problem: 
accommodation is incomplete i n  t h i s  i n s t runen t .  I n  the 
p a s t ,  d a t a  from nude m a s s  spectrometers  have been reduced 
by assuning the  accomodation c o e f f i c i e n t  t o  be e i t h e r  
zero o r  un i ty ,  as has been pointed out  i n  the  papers of 
Mawrsberger ,  e t  al .  (26) and Hedin and Nier (21) .  A 
theory i n  which p a r t i a l  accommodation and chemical re- 
ac t ions  are included is present ly  under development and 
w i l l  be presented elsewhere. 

The e f f e c t s  of adsorption are commonly observed i n  

The 
Thermal 

3. Rocket-Borne Pressure Gauges and M a s s  Spectrometers 

The d i f f e r e n t i a l  equation which is  customarily used 
t o  descr ibe  the  pressure  within t h e  chamber of a rocket-  
borne pressure  gauge o r  mass spectrometer  can be w r i t t e n  

v *  
kT d t  

where p is 
me, T i ts  

A n C, 
F (S COS+) - A. P 0 0  

P 

2 6  
t h e  pressure  in s ide  the  gauge, V is its vol- 
temperature and A0 t he  area of i t s  o r i f i c e ;  - 

k is Boltzmann's cons tan t ,  t is the  t i m e ,  no is t h e  number 
dens i ty  of molecules i n  t h e  ambient air, C, t he  speed of 
the  rocke t ,  and p is  t h e  number of molecules which s t r i k e  
an area of 1 cm2 i n  the  gauge from one s i d e  i n  one second. 
The func t ion  F ( s cos $) depends on t h e  speed r a t i o ,  s ,  
and t h e  angle  JI between t h e  ve loc i ty  vec to r  and the  normal 
to  the  o r i f i c e .  

Equation [11 has a well-known s o l u t i o n  i n  terms of 
error funct ions (15). According t o  t h i s  s o l u t i o n ,  p i e  
neg l ig ib ly  s m a l l  when t h e  o r i f i c e  po in t s  downstream; 

vent iona l  s o l u t i o n  t o  t h i s  dilemma (27) iu t o  aub t rac t  
in iact,  p ----- 4 -  ---14-4hl 

L I S V S L  A -  LIE6AAfiLIIA.y smgll. '!'he Ccc- 
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t he  minimum pressure  observed during t h e  s p i n  cycle  ("the 
background") from a l l  o the r  readings,  and uRe t h i s  d i f -  
ference,  Ap, i n  place o f  p i n  the  s o l u t i o n  of Eq. E11. 
I'rerrumnbly t h e  plryeical reasoning behind t h i s  Rtep is the 
tresumptiou that the  background is caused by outgassing 
(desorption of  gases present  a t  launch) and is unre la ted  
t o  t h e  ambient atmosphere. Ce r t a in ly ,  ou tgass ing  does 
occur ,  bu t  i f  i t  were t h e  only source o f  background gas, 
then  t h e  background would cont inua l ly  decrease with t i m e  
dur ing a rocket  f l i g h t .  An examination of pressure  
h i s t o r i e s  during rocke t  f l i g h t s  reveals t h a t  t h e  back- 
ground does decrease during the  upleg and p a r t  of t h e  
downleg, but  then increases continuously during t h e  re- 
mainder o f  t h e  dawnleg (see Figure 8 of re ference  23 and 
Figure 3 of re ference  11). 
t h a t  ne t  adsorpt ion is occurr ing  during p a r t  o f  t h e  rocke t  
f l i g h t .  

The obvious conclusion is 

4. Satel l i te-Borne Instruments -- 
A phys ica l ly  s impler  s i t u a t i o n  occurs  i n  t h e  case of  a 
sa t e l l i t e -bo rne  pressure  gauge o r  mass spectrometer .  
Af te r  i t  has been i n  o r b i t  a day o r  t w o ,  t h e  o r i g i n a l  
outgassing has  been completed ( 2 8 ) ,  so t he  n e t  amount of 
gas adsorbed during a s p i n  cyc le  18 zero,  except  f o r  a 
s l i g h t  amount corresponding t o  the  change i n  t h e  lreigllt 
of perigee during t h e  s p i n  per iod  (usua l ly  about 1 s e c ) .  
Nevertheless,  a s i g n i f i c a n t  background persists (see  
Figure 1, which was taken from re fe rence  24). I n  o rde r  
t o  t r e a t  t h i s  s i t u a t i o n ,  i t  w a s  necessary (22) t o  add two 
more terms t o  t h e  d i f f e r e n t i a l  equat ion  [I]. Assuming 
t h a t  the adsorp t ive  behavior  can be  descr ibed  by Lang- 
muir's theory  ( 2 9 ) ,  t h e  complete d i f f e r e n t i a l  equat ion  is: 

where Aw is t h e  area of  t h e  i n s i d e  w a l l s  o f  t h e  i n s t r u -  
ment, 8 is t h e  f r a c t i o n a l  su r f ace  coverage,  a is t h e  
s t i c k i n g  p r o b a b i l i t y ,  and v is a cons tan t  r ep resen t ing  
t h e  number of  molecules which would be desorbed p e r  ~ e c -  
ond from 1 cm2 which was coated wi th  one monol.ayer. The 

L 
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four  terms on t h e  r i g h t  hand s i d e  of Eq. [ 2 ]  represent  
the  rate of change of t he  nunber of molecules i n  f l i g h t  
i n  the  chamber because o f  i n f lux ,  e f f l u x ,  desorpt ion,  and 
adsorp t ion ,  respec t ive ly .  

i n  producing t h e  background i n  t h e  Redhead pressure  gauge 
aboard Explorer 1 7 ,  assuming t h a t  t h e  atmosphere c o n s i s t s  
o f  a s i n g l e  cons t i t uen t ,  has been published (22).  A 
r igorous s o l u t i o n  of Eq. [2 ]  has  now been obta ined ,  by 
employing numerical i n t eg ra t ion .  The absolu te  values  of  
the  four  terms on t h e  r igh t  hand s i d e  of Eq. [ 2 ]  a r e  
shown a t  the  top of Figure 2.  The pressure ,  which is 
propor t iona l  t o  t h e  t i m e  i n t e g r a l  of t he  sum of t h e  four  
terms appears below, and t h e  p ressure  which would have 
been measured without adsorption is shown dashed. 
In performing the  numerical i n t e g r a t i o n  t h e  i n i t i a l  con- 
d i t i o n s  w e r e  chosen when t h e  o r i f i c e  pointed downstream. 
The i n i t i a l  p ressure  was p - 4.8 x 10-8 t o r r  and t h e  
i n i t i a l  su r f ace  coverage w a s  0 - 2 x 10-4. 
used i n  Figure 2 ,  a = 3 x 10-3 and v = 1.2  x lo1!, w e r e  
s e l e c t e d  because they caused t h e  pressure  and coverage t o  
r e tu rn  t o  t h e i r  i n i t i a l  values a f t e r  one complete cycle .  

The important po in t  t o  n o t i c e  is t h a t  t h e  peak 
pressure  with adsorpt ion i s  lower than the  peak pressure  
without adsorp t ion ,  although t h e  ambient number dens i ty  
is  t h e  same. When t h e  minimum pressure  is  sub t r ac t ed  
from the  maximum,  i n  t h e  conventional manner (27) ,  the  
ambient number dens i ty  is underestimated by 34%. Even 
a f t e r  t h i s  co r rec t ion ,  t h e  dens i ty  measured by the  pres-  
s u r e  gauge is s t i l l  only ha l f  t h a t  deduced from o r b i t a l  
decay. 
der iving d e n s i t i e s  from s a t e l l i t e  drag i n  the  a l t i t u d e  
range 250-300 km is the  dra8 c o e f f i c i e n t .  It is unl ike ly  
to  be i n  e r r o r  by more than 15% (10,30), so  the  d e n s i t i e s  
derived from drag d a t a  are known t o  t h i s  accuracy. The 
remaining discrepancy between drag and ins t rumenta l  
measurements i s  probably caused by chemical r eac t ions  of 
atomic oxygen wi th in  the  instruments (20,31),  and by cal- 
i b r a t i o n  e r r o r s  of t he  in s t runen t s  (10,161. 

A per tu rba t ive  ana lys i s  of t h e  e f f e c t  of  adsorp t ion  

‘rtie arameters 

The only s i g n i f i c a n t  source of uncer ta in ty  i n  

5 .  Resolution - of  the  Discrepancies Between Drag and_ 
Instrlnnent a1 Measuremeng 
-_I____ 

We propose t o  reso lve  t h e  d iscrepancies  between drag 
and ins t rumenta l  measurements by taking i n t o  account 
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several of  t he  phys ica l  processes  descr ibed above. 
extensive c o l l e c t i o n  of measurements from Explorer 1 7  
ind ica ted  t h a t  the dens i ty  measured by o r b i t a l  decay w a s  
nearly 2.5 times as l a rge  as t h a t  deduced from the  pres-  
s u r e  gauges at a l t i t u d e s  near  280 km. We would mult iply 
the  gauge measurements by 1.34 t o  correct f o r  adsorp t ion ,  
and by approximately 1 .2  t o  co r rec t  f o r  c o l l i s i o n s  between 
ni t rogen and mercury vapor a f f e c t i n g  the  McLeod Gauge ca l -  
i b ra t ion  (10.32). T h i s  s t i l l  leaves R discrepancy of 
2.5/1,61 = 1.55, which w e  a t t r i b u t e  t o  tlie clrcmlcal rc*- 
act ions of atomic oxygen discussed by von Zalrn ( 2 0 )  atid 
Niemann and Kennedy (31).  The compounds formed are 
presumably less ef f i c i e n t l y  measured by the gauges. 
(Cook (10) quotes  p r i v a t e  comunica t ions  from A .  0 .  Nier 
and N. W. Spencer giving experimental  evidence of l o s s  of 
atomic oxygen i n  enclosed i n s t r m e n t s . )  
a l t e r n a t i v e  explanat ion of the  remaining discrepancy of 
1.55 is the  suggest ion of Friedman (16) t h a t  the  i n d i r e c t  
c a l i b r a t i o n  of atomic oxygen in t roduces  a sys temat ic  e r r o r  
through the  r a t i o  of absorpt ion c ross  s e c t i o n s  which i s  
employed. 

Evidence t h a t  gauges i n c o r r e c t l y  measure the  amount 
of atomic oxygen is furnished by the  gauge d a t a  from t h e  
Russian Geophysical Rocket and Sputnik 3, which have been 
compared with drag measurements by Cook (10).  The d i s -  
crepancies between gauge-derived d e n s i t i e s  and drag- 
derived d e n s i t i e s  f o r  these  two spacec ra f t  are q u i t e  
d i f f e r e n t  func t ions  of a l t i t u d e ,  because one w a s  a l o f t  a t  
sunspot minimum and the  o t h e r  at sunspot maximum. 
ever ,  wi th in  tlie experimental  accuracy, t he  d iscrepancies  
are t h e  same monotonic funct ion of t h e  mean molecular 
mass of t h e  atmosphere, as given by t h e  CIKA model. 
the  r a t i o  of  atomic oxygen t o  molecular n i t rogen  is near  
uni ty ,  t he  discrepancy is small, bu t  where the  r a t i o  i s  
la rge ,  t h e  discrepancy becomes l a r g e  a l s o .  The obvious 
conclusion is t h a t  only p a r t  of t h e  ambient oxygen is 
being measured, e i t h e r  because of loss mechanisms o r  
i nco r rec t  c a l i b r a t i o n  of t h e  i n s t r m e n t s  f o r  atomic oxygen. 

In  t h i s  paper w e  have descr ibed several phenomena, 
involving k i n e t i c  theory and gas-surface i n t e r a c t i o n s ,  
which can be of importance i n  i n t e r p r e t i n g  ins t rumenta l  
measurements of atmospheric p rope r t i e s .  
standing of t hese  processes w i l l  enab le  mass spectrometers  
and pressure gauges t o  f u l f i l l  t h e  promise inherent  i n  
t h e i r  f l e x i b i l i t y  and s e n s i t i v i t y .  

The 

A poss ib l e  

Ilow- 

Where 

A b e t t e r  under- 
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FIGURE 1. REDHEAD GAUGE PRESSURE 
(AFTER NEWTON, ET. AL.) 



f IGURE 2. PHYSICAL PROCESSES CONTRIBUTING 
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